Inverse function

If f is a function from A to B then an inverse function for f is a function in the opposite direction, from B to A.
$\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$
Not all functions have an inverse. Two conditions are:

1) Every $y \in B$ corresponds to no more than one $x \in A$; a function f with this property is called "one-to-one", or information-preserving, or an injection.

$$
\left(\forall x_{1}, x_{2} \in A\right)\left(x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)
$$

2) Every $y \in B$ corresponds to at least one $x \in A$; a function f with this property is called onto, or a surjection.

$$
(\forall y \in B)(\exists x \in A)(f(x)=y)
$$

The procedure for solving problems:
i) Instead off (x) place y
ii) From here express x "over y "
iii) Process change: instead of x write $f^{-1}(x)$, and instead of y write x

EXAMPLES:

1) We have function $f(x)=2 x-1$. Determine its inverse function and create a graphics function $f(x)$ and $\mathbf{f}^{-1}(\mathbf{x})$.

Solution:

$\mathrm{f}(\mathrm{x})=2 \mathrm{x}-1 \quad$ Instead of $f(x)$ place y
$\mathrm{y}=2 \mathrm{x}-1 \quad$ From here express \boldsymbol{x} "over \boldsymbol{y} "
$2 x=y+1$
$x=\frac{y+1}{2} \quad$ instead of x write $f^{-1}(x)$, and instead of y write x
$\mathrm{f}^{-1}(\mathrm{x})=\frac{x+1}{2} \quad$ and here we inverse function.

Create a graphics function $f(x)$ and $f^{-1}(x)$:
We'll take two arbitrary points (first $\mathrm{x}=0$ and then $\mathrm{y}=0$) and draw them.

$$
f(x)=2 x-1
$$

x	0	$1 / 2$
$\mathrm{f}(\mathrm{x})$	-1	0

$\mathrm{f}^{-1}(\mathrm{x})=\frac{x+1}{2}$

x	0	-1
$\mathrm{f}^{-1}(\mathrm{x})$	$1 / 2$	0

Note that graphics are balanced in relation to the $\mathbf{y}=\mathbf{x}$.
2. We have function: $f(x)=\log _{2}(x-1)$. Determine its inverse function and create a graphics function $f(x)$ and $f^{-1}(x)$.

Solution:

$\mathrm{f}(\mathrm{x})=\log _{2}(\mathrm{x}-1) \quad$ Instead of $\boldsymbol{f}(\boldsymbol{x})$ place \boldsymbol{y}
$\mathrm{y}=\log _{2}(\mathrm{x}-1) \quad$ From here express \boldsymbol{x}
$\mathrm{x}-1=2^{\mathrm{y}}$
$\mathrm{x}=2^{\mathrm{y}}+1 \quad$ instead of \boldsymbol{x} write $\boldsymbol{f}^{-1}(\boldsymbol{x})$, and instead of \boldsymbol{y} write x
$f^{-1}(x)=2^{x}+1$ and here is inverse function
graphics:
$f(x)=\log _{2}(x-1)$
This function is defined for $\mathrm{x}-1>0, \mathrm{x}>1$, which tells us that $\mathrm{x}=1$ is vertical asymptote on the left side. Take some arbitrary value and fill out the table:

x	$3 / 2$	2	3	5
$\mathrm{f}(\mathrm{x})$	-1	0	1	2

$\mathrm{f}^{-1}(\mathrm{x})=\mathbf{2}^{\mathrm{x}}+\mathbf{1}$
This function obviously can not have a value of less than, or equal to 1 , which tells us that 1 is its horizontal asymptote. Take some arbitrary value and fill out the table:

x	-1	0	1
$\mathrm{f}^{-1}(\mathrm{x})$	$3 / 2$	2	3

Note, again, that graphics are balanced in relation to the $\mathbf{y}=\mathbf{x}$
3) Determine the inverse function of function: $f(x)=3^{x}-1$

Solution:

$f(x)=3^{x}-1$
$y=3^{x}-1$
$3^{x}=y+1$
$x=\log _{3}(y+1)$
$\mathrm{f}^{-1}(\mathrm{x})=\log _{3}(\mathrm{x}+1)$
4) We have function: $f(x)=\mathbf{x}^{2}$. Determine its inverse function $f^{-1}(x)$.

Solution:

$f(x)=x^{2}$
$y=x^{2}$
$\mathrm{x}= \pm \sqrt{y} \longrightarrow \mathrm{f}^{-1}(\mathrm{x})= \pm \sqrt{x}$
It was not difficult to solve this, but this solution is not fair! Why?
Must take into account where the function is increasing, and where decreasing!
$f(x)=x^{2}$ is decreasing for $x<0 \quad$ and for her is: $f^{-1}(x)=-\sqrt{x}$
$f(x)=x^{2}$ is increasing for $x>0$ and for her is: $f^{-1}(x)=+\sqrt{x}$
This is the correct solution now!

5) We have function: $f(x)=\log _{2}\left(x+\sqrt{x^{2}+1}\right)$. Find $f^{-1}(x)$.

Solution:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\log _{2}\left(\mathrm{x}+\sqrt{x^{2}+1}\right) \\
& \mathrm{y}=\log _{2}\left(\mathrm{x}+\sqrt{x^{2}+1}\right) \\
& \mathrm{x}+\sqrt{x^{2}+1}=2^{\mathrm{y}} \\
& \sqrt{x^{2}+1}=2^{\mathrm{y}}-\mathrm{x} \\
& \mathrm{x}^{2}+1=2^{2 \mathrm{y}}-2 \mathrm{x} 2^{\mathrm{y}}+\mathrm{x}^{2}
\end{aligned}
$$

$2 \mathrm{x} 2^{y}=2^{2 y}-1$
$\mathrm{x}=\frac{2^{2 y}-1}{2^{y+1}}$
$\mathrm{f}^{-1}(\mathrm{x})=\frac{2^{2 x}-1}{2^{x+1}}$
$\mathrm{f}^{-1}(\mathrm{x})=\frac{2^{2 x}-1}{2^{x+1}}=\frac{2^{2 x}-1}{2^{x} 2}=\frac{\frac{2^{2 x}}{2^{x}}-\frac{1}{2^{x}}}{2}=\frac{2^{x}-2^{-x}}{2}$
6) We have function: $f(x)=\sqrt[3]{x+\sqrt{1+x^{2}}}+\sqrt[3]{x-\sqrt{1+x^{2}}}$. Find $f^{-1}(\mathbf{x})$.

Solution:

$\mathrm{f}(\mathrm{x})=\sqrt[3]{x+\sqrt{1+x^{2}}}+\sqrt[3]{x-\sqrt{1+x^{2}}}$
$\mathrm{y}=\sqrt[3]{x+\sqrt{1+x^{2}}}+\sqrt[3]{x-\sqrt{1+x^{2}}}$ This all goes to the third degree.
Remind yourselfe formula:

$$
(A+B)^{3}=A^{3}+3 A^{2} B+3 A B^{2}+B^{3}=A^{3}+3 A B(A+B)+B^{3}
$$

$$
\mathrm{y}^{3}=x+\sqrt{1+x^{2}}+3 \sqrt[3]{x+\sqrt{1+x^{2}}} \sqrt[3]{x-\sqrt{1+x^{2}}}\left(\sqrt[3]{x+\sqrt{1+x^{2}}}+\sqrt[3]{x-\sqrt{1+x^{2}}}\right)+x-\sqrt{1+x^{2}}
$$

$$
\mathrm{y}^{3}=2 \mathrm{x}+3 \sqrt[3]{\left(x+\sqrt{1+x^{2}}\right)\left(x-\sqrt{1+x^{2}}\right)} \mathrm{y}
$$

$$
\begin{aligned}
& \mathrm{y}^{3}=2 \mathrm{x}+3 \sqrt[3]{x^{2}-1-x^{2}} y \\
& \mathrm{y}^{3}=2 \mathrm{x}-3 \mathrm{y} \\
& 2 \mathrm{x}=\mathrm{y}^{3}+3 \mathrm{y} \\
& x=\frac{y^{3}+3 y}{2}
\end{aligned}
$$

$$
f^{-1}(x)=\frac{x^{3}+3 x}{2}
$$

final solution

