If f is a function from A to B then an **inverse function** for f is a function in the opposite direction, from B to A.

f: $A \rightarrow B$

Not all functions have an inverse. Two conditions are:

1) Every $y \in B$ corresponds to **no more than one** $x \in A$; a function f with this property is called "one-to-one", or information-preserving, or an **injection**.

$$(\forall x_1, x_2 \in A)(x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2))$$

2) Every $y \in B$ corresponds to **at least one** $x \in A$; a function f with this property is called onto, or a surjection.

$$(\forall y \in B)(\exists x \in A)(f(x) = y)$$

The procedure for solving problems:

i) Instead of f (x) place y

ii) From here express x "over y"

iii) Process change: instead of x write $f^{-1}(x)$, and instead of y write x

EXAMPLES:

1) We have function f(x) = 2x - 1. Determine its inverse function and create a graphics function f(x) and $f^{-1}(x)$.

Solution:

- f(x) = 2x 1 Instead of f(x) place y
- y = 2x 1 From here express x "over y"

2x = y + 1

$$x = \frac{y+1}{2}$$
 instead of x write $f^{-1}(x)$, and instead of y write x

 $f^{-1}(x) = \frac{x+1}{2}$ and here we inverse function.

Create a graphics function f(x) and $f^{-1}(x)$:

We'll take two arbitrary points (first x = 0 and then y = 0) and draw them.

$$f(x) = 2x - 1$$

Х	0	1/2
f(x)	-1	0

$f^{-1}(x) =$	x+1
I(x) =	2

Х	0	-1
$f^{-1}(x)$	1/2	0

Note that graphics are balanced in relation to the y = x.

2. We have function: $f(x) = \log_2(x-1)$. Determine its inverse function and create a graphics function f(x) and $f^{-1}(x)$.

Solution:

f(x) = log 2(x-1) Instead of f (x) place y y = log 2 (x-1) From here express x x - 1 = 2^y x = 2^y +1 instead of x write $f^{-1}(x)$, and instead of y write x f⁻¹(x) = 2^x + 1 and here is inverse function

graphics:

 $\mathbf{f}(\mathbf{x}) = \log_2(\mathbf{x} - 1)$

This function is defined for x-1 > 0, x > 1, which tells us that x = 1 is vertical asymptote on the left side. Take some arbitrary value and fill out the table:

Х	3/2	2	3	5
f(x)	-1	0	1	2

$f^{-1}(x) = 2^{x} + 1$

This function obviously can not have a value of less than, or equal to 1, which tells us that 1 is its horizontal asymptote. Take some arbitrary value and fill out the table:

Note, again, that graphics are balanced in relation to the y = x

3) Determine the inverse function of function: $f(x) = 3^{x} - 1$

Solution:

 $f(x) = 3^{x} - 1$ $y = 3^{x} - 1$ $3^{x} = y + 1$ $x = \log_3(y+1)$ $f^{-1}(x) = \log_3 (x+1)$ _____

4) We have function: $f(x) = x^2$. Determine its inverse function $f^{-1}(x)$.

Solution:

 $f(x) = x^2$ $y = x^2$

 $x = \pm \sqrt{y}$ ____ $f^{-1}(x) = \pm \sqrt{x}$

It was not difficult to solve this, but this solution is not fair! Why?

Must take into account where the function is increasing, and where decreasing!

 $f(x) = x^2$ is decreasing for x < 0 and for her is : $f^{-1}(x) = -\sqrt{x}$ $f(x) = x^2$ is increasing for x > 0 and for her is : $f^{-1}(x) = +\sqrt{x}$

This is the correct solution now!

5) We have function: $f(x) = \log_2(x + \sqrt{x^2 + 1})$. Find $f^{-1}(x)$.

Solution:

 $f(x) = \log_{2}(x + \sqrt{x^{2} + 1})$ $y = \log_{2}(x + \sqrt{x^{2} + 1})$ $x + \sqrt{x^{2} + 1} = 2^{y}$ $\sqrt{x^{2} + 1} = 2^{y} - x$ $x^{2} + 1 = 2^{2y} - 2x \ 2^{y} + x^{2}$ $2x \ 2^{y} = 2^{2y} - 1$ $x = \frac{2^{2y} - 1}{2^{y+1}}$ $f^{-1}(x) = \frac{2^{2x} - 1}{2^{x+1}} = \frac{2^{2x} - 1}{2^{x}2} = \frac{\frac{2^{2x}}{2^{x}} - \frac{1}{2^{x}}}{2} = \frac{2^{x} - 2^{-x}}{2}$ 6) We have function: $f(x) = \sqrt[3]{x + \sqrt{1 + x^{2}}} + \sqrt[3]{x - \sqrt{1 + x^{2}}}$. Find $f^{-1}(x)$.

Solution:

$$f(x) = \sqrt[3]{x + \sqrt{1 + x^2}} + \sqrt[3]{x - \sqrt{1 + x^2}}$$

y = $\sqrt[3]{x + \sqrt{1 + x^2}} + \sqrt[3]{x - \sqrt{1 + x^2}}$ This all goes to the third degree.

Remind yourselfe formula:

$$(A + B)^{3} = A^{3} + 3A^{2}B + 3AB^{2} + B^{3} = A^{3} + 3AB(A + B) + B^{3}$$
$$y^{3} = x + \sqrt{1 + x^{2}} + 3\sqrt[3]{x + \sqrt{1 + x^{2}}} \sqrt[3]{x - \sqrt{1 + x^{2}}} (\sqrt[3]{x + \sqrt{1 + x^{2}}} + \sqrt[3]{x - \sqrt{1 + x^{2}}}) + x - \sqrt{1 + x^{2}}$$
$$y^{3} = 2x + 3\sqrt[3]{(x + \sqrt{1 + x^{2}})(x - \sqrt{1 + x^{2}})} y$$

$$y^{3} = 2x + 3 \sqrt[3]{x^{2} - 1 - x^{2}} y$$
$$y^{3} = 2x - 3y$$
$$2x = y^{3} + 3y$$
$$x = \frac{y^{3} + 3y}{2}$$

 $f^{-1}(x) = \frac{x^3 + 3x}{2}$ final solution